网站首页

半岛彩票产品中心

半岛智能终端处理器 半岛智能云服务器 半岛软件开发环境

半岛彩票新闻中心

关于我们半岛彩票

公司概况 核心优势 核心团队 发展历程

联系我们半岛彩票·(中国)官方网站

官方微信 官方微博
半岛彩票·(中国)官方网站 > 半岛彩票产品中心 > 半岛智能终端处理器

人工智能(AI)是如何处理数据的?半岛彩票

发布时间:2023-08-30 07:39浏览次数: 来源于:网络

  半岛彩票举个简单的例子,深度学习就是一种表示学习,其学习过程是一种对于有效特征的抽取过程。有用的特征在层层学习后抽取了出来,最终交给了后面的分类层进行预测。一种比较不严谨但直观的理解可以是,假设一个n层的深度学习网络,那么输入数据在被网络逐层抽象化,靠前的层(1~k)学到了低阶特征(low level features),中间层(k+1~m)学到了中阶特征(middle level features),而靠后的层上(m+1~n-1)特征达到了高度的抽象化获得了高阶特征(high level features),最终高度的抽象化的特征被应用于分类层(n)上,从而得到了良好的分类结果。一个常用例子是说卷积网络的前面几层可以学到“边的概念”,之后学到了“角的概念”,并逐步学到了更加抽象复杂的如“图形的概念”。下图就给出了一个直观的例子,即图像经过深度网络学习后得到了高度抽象的有效特征,从而作为预测层的输入数据,并最终预测目标是一只猫。

  另一个常见的例子就是下图中,深度信念网络(deep belief network)通过堆叠的受限玻尔兹曼机(Stacked RBM)来学习特征,和cnn不同这个过程是无监督的。将RBF堆叠的原因就是将底层RBF学到的特征逐渐传递的上层的RBF上,逐渐抽取复杂的特征。比如下图从左到右就可以是低层RBF学到的特征到高层RBF学到的复杂特征。在得到这些良好的特征后就可以传入后端的传统神经网络进行学习。

  换个不严谨的白话说法,深度学习的层层网络可以从数据中自动学习到有用的、高度抽象的特征,而最终目的是为了帮助分类层做出良好的预测。而深度学习为什么效果好?大概和它能够有效的抽取到特征脱不了关系。当然,深度学习的一大特点是其对数据的分布式表示(distributed representation)(*也和稀疏性表示等其他特性有关),最直观的例子可以是nlp中的word2vec,每个单词不再是割裂的而互相有了关联。类似的,不少网络中的参数共享就是分布式表示,不仅降低了参数量需求也提高对于数据的描述能力。仅看分类层的话,深度学习和其他的机器学习似乎没有天壤之别,但正因为有了种种良好的表示学习能力使其有了过人之处。下图直观的对比了我们上文提到的两种特征的学习方式,传统的机器学习方法主要依赖人工特征处理与提取,而深度学习依赖模型自身去学习数据的表示。

  对输入数据进行学习,得到更有利于使用的特征(*可能同时做出了预测)。代表的算法大致包括:

  深度学习,包括大部分常见的模型如cnn/rnn/dbn,也包括迁移学习等

  某些无监督学习算法,如主成分分析(PCA)通过对数据转化而使得输入数据更有意义

  的数据特征,而模型的主要任务是预测,比如简单的线性回归期待良好的输入数据(如离散化后的数据)

  需要注意的是,这种归类方法是不严谨的,仅为了直观目的而已。并没有一种划分说a算法是表示学习,而b算法不是,只是为了一种便于理解的划分。

  因此,大部分的模型都处于纯粹的表示学习和纯粹的依赖人工特征之间,程度不同而已,很少有绝对的自动学习模型。详细的关于两种处理数据方法的对比和历史可以参考一篇最近的综述论文 [2],更早也更经典的关于特征学习的介绍可以参考论文 [1]。

  答案是不一定的:1. 在数据量不够的时候,自动特征抽取的方法往往不如人为的特征工程 2. 当使用者对于数据和问题有深刻的理解时,人工的特征工程往往效果更好。

  一个极端的例子是,在kaggle比赛中的特征工程总能带来一些提升,因此人工的特征抽取和处理依然有用武之地。

  同时也值得注意,表示学习的另一好处是高度抽象化的特征往往可以被应用于相关的领域上,这也是我们常说的迁移学习(transfer learning)的思路。比如有了大量猫的图片以后,不仅可以用于预测一个物体是不是猫,也可以用于将抽取到的特征再运用于其他类似的领域从而节省数据开销。

  2. 特征学习(表示学习),特征工程,特征选择,维度压缩之间有什么关系?

  从某个角度来看,表示学习有“嵌入式的特征选择”(embedded feature selection)的特性,其表示学习嵌入到了模型中。举个简单的例子,决策树模型在训练过程中可以同时学习到不同特征的重要性,而这个过程是建模的一部分,是一种嵌入式的特征选择。巧合的看,表示学习也是一种嵌入表示(embedded representation)。如维度压缩方法PCA,也是一种将高维数据找到合适的低维嵌入的过程,前文提到的word2vec也是另一种“嵌入”。至于这种“嵌入”是否必须是高维到低维,不一定但往往是因为特征被抽象化了。以上提到的两种嵌入一种是对于模型的嵌入,一种是在维度上嵌入,主要是名字上的巧合。

  这个问题需要分模型讨论。以深度学习为例,特征学习是一种对于模型的理解,并不是唯一的理解,而为什么泛化效果好,还缺乏系统的理论研究。

  此处我们想再次强调的是,这个不是一个严谨的科学划分,是一种直观的理解。如果所使用的模型拥有对于数据的简化、特征表示和抽取能力,我们都可以认为它是有表示学习的特性。至于哪个模型算,哪个模型不算,不必纠结这点。而狭义的特征工程指的是处理缺失值、特征选择、维度压缩等各种预处理手段,而从更大的角度看主要目的是提高数据的表示能力。对于数据的人为提炼使其有了更好的表达,这其实是人工的表示学习。

  写在最后是,这篇回答仅仅是一种对于机器学习中数据处理方法的理解,并不是唯一正确的看法。有鉴于机器学习领域的知识更迭速度很快,个人的知识储备也有限,仅供参考。

  从微信「看一看」质量控制模块框架案例,剖析人工智能(AI)运用在推荐系统是如何处理数据的。

  微信作为国内最大用户群体的应用,在人们的生活,工作,学习中提供社交功能的同时,还提供了工具,游戏,购物,支付,内容,搜索,小程序等服务。看一看作为微信的重要组成部分,在原有公众平台资讯阅读的基础上,为用户提供中心化的内容消费平台,旨在提升内容发现效率,优化内容质量,丰富内容种类。

  与其他很多资讯产品上线初的野蛮生长不一样,质量控制一开始就作为看一看上线标准被提出并进行了大量的投入。质量控制的必要性是由于多方面的因素决定的。

  (内在属性)一个产品的出身和环境决定了其的调性,微信内在也决定了看一看的调性。在这里,调性这个词更多的是形容内容质量可以被用户接受的底线。用户对微信的期待也提高了这个底线。

  (外部压力)微信的每一次改动都会受到广泛的关注,在功能上线初期面临着比其他应用更大的舆论压力和监管压力。

  (黑产对抗)因为用户多,流量大,强大的经济效益引来黑产的参与,使得内容生产的大环境很差,低质量数据充斥各个角落;问题也在不断地的变化,识别控制难度也在持续加大。

  既然质量控制作为推荐系统必不可少的一部分,那么在推荐系统中处质量控制处于什么位置,包含哪些子模块,又是从哪几方面方面进行控制?

  数据从内容生产方发表产生,由平台收集数据。这里生产方来自四面八方,生产的内容五花八门,质量也是参差不齐。所以,平台将数据接入之后第一件事情就是将这些内容进行格式化和特征提取,方便后面的流程能通用化地处理这些内容数据。

  内容经过前面的初步处理后,质量控制模块根据已有的特征对内容进行过滤,主要是过滤不符合平台规则的低质量数据和提供后面排序需要考虑的质量因子。这里面涉及到过滤效率的问题,一般会分为粗过滤还有细过滤。排序推荐模块将根据内容特征还有用户行为对数据进行排序。

  最后,平台将内容推荐给用户进行消费,消费的过程中会与内容产生很多交互行为。这些行为数据,可以用于平台的质量控制和推荐排序;也可以反馈给生产者,让生产者能够了解到内容被消费的情况,生产更多符合用户需求的内容。

  数据的一生中,我们可以看到平台都是通过对发表内容本身进行检测来进行质量控制,这显然是不够的。一个控制框架的有效运行不能仅仅在一个地方进行监控,需要全面,多维度共同作用。我们可以抽象一下平台,生产,还有用户。我们会发现其实除了对平台自身检测能力进行提升外, 也可以对生产者和用户进行引导,评估。

  根据生产者生产内容的质量,还有用户对内容的反馈,平台可以对生产者进行分级分类。对不同等级的生产者,使用不同质量控制策略,如,高质量的账号颁发个免检标签,在质量控制的时候避免误伤。而对于一些已经被检测到有低质量内容的账号进行一定时间的封禁,减少相似问题的爆发,增加长尾问题的召回,提升系统的响应速度。不同类目也是同样的道理,比如高危的内容类(社会民生,养生健康,娱乐)需要加强控制。

  而对于用户,我们同样可以根据一下用户的基础数据(地域,年龄,性别)和用户在微信内的一下阅读信息,对用户进行分类。不同用户可以使用不同的控制策略。这样在保证了用户对体验有不同要求的前提下,尽可能地保证推荐系统的效率。

  除了上面说的三个部分之外,还有几个同样非常重要的质量控制辅助模块,这些模块对保证整个质量控制的正常运行至关重要。

  监控系统:监控系统需要对平台,生产,用户的各个方面进行监控,有些数值监控指标可以通过机器持续监控,而有些数据本身的问题则需要人工的轮询与审核,还有就是新问题的发现与归纳汇总。其中最重要的是能够进行全方位覆盖,不同范围,不同领域,有时候问题可能隐藏的茫茫大盘数据中。

  干预系统:干预系统是对问题出现后,进行快速处理的手段。这样能够在模型策略迭代较慢的时候暂时压制问题,减少影响范围。干预系统除了生效快之外,还有一个重要的能力是相似内容的查找(去重指纹),如相似标题的封禁和相似图片的封禁。

  标注系统:标注系统作为一个提升样本收集效率的平台,不仅能有效提升标注人员的标注效率,进而有效提升模型的迭代效率;而且标注系统方便对问题的收集,总结,归纳,形成各个领域的知识库。

  前面介绍了质量控制的必要性,也介绍了质量控制的大体框架。那么到底数据是指哪些数据?所谓的质量又指的是哪些质量指标?这些数据跟这些质量指标带给我们什么问题与挑战呢?

  看一看的数据从来源上分包括公众平台,腾讯新闻,腾讯视频,企鹅号,微视,快手等。从内容形式上分有文章,新闻,视频,图片等。样式丰富的数据在满足不同用户的内容需求的同时也加大了监管的难度。

  同时,看一看以用户的体验为出发点结合具体业务需要建立了一套质量指标体系。这里指标随着业务的发展不断在增加,含义也在不断的丰富。多维度的指标可以为业务的质量过滤和推荐排序提供更多的个性化的选择。

  那么,我们的问题和挑战是什么呢?我们先来看一下日常工作中经常遇到的一些对话。事情的本质往往隐藏在复杂的表面下。

  丰富的数据源,多维度的质量指标,个性化的业务场景带来的其实是组合爆炸问题。如果对每一种组合都单独处理,不仅导致大量人力的浪费;同时,也无法对速度要求高的质量控制问题进行快速响应。毫无疑问从体系上进行通用化,模板化,可复用,可迁移是我们解决问题的方向。下一节,我们会从一个普通任务的迭代周期出发,分析上面对话对应的迭代过程的那一部分,并对相应的部分进行相应的通用化。

  1.规则制定:规则制定可以说是质量问题解决中最重要的工作,问题分析清楚了,解法也就出来了。这里简单列几个小原则,不进行展开。

  主要组成:需要对问题进行全面的分析,包括场景数据是什么,问题有多少子类型,问题比例有多大,影响范围有多广,业界是否也有同样的问题,做法是什么。

  基于需求:这个阶段更应该从需求出发进行问题的分解,尽量减少技术性的考虑。很多时候人会往往会混淆“需要做”和“怎么做”。因为觉得这个东西难做,或者不能做而将这个东西认为不需要做。

  基于数据:规则的制订需要结合数据进行讨论,不能几个人凭主观想法就定下规则。数据往往会提供很多我们意想不到的冲突情况。

  2.特征提取:这里涉及如何将业务需求转化为技术需求。根据问题分析的结论,对直接特征进行提取,如标题,正文,封面图,隐藏内容,页面结构,跳转链接,锚文本,账号,统计特征等。

  3.样本收集:根据需要从原始数据中收集一定量的正负样本,这些样本可以通过相似样本挖掘,也可以通过人工标注。

  4. 模型训练:使用模型对提取的特征进行组合,并对收集的样本分布进行拟合。

  特征组合:模型将问题需要考虑的特征进行组合。有些问题只需要考虑标题(标题党),有些问题需要考虑文章标题的匹配程度(文不对题),有些问题需要同时考虑文本与图片的结合(低俗色情);有些问题只需要考虑主题词(广告),有些问题需要考虑上下文语境(假新闻)。

  数据分布:模型会尽可能贴合样本数据的分布,降低 Loss。有些数据源问题比例高,有些数据源问题比例低。切换数据源的时候,如果样本分布与目标数据源的分布不一致,效果往往有较大的差异。

  看完上一小节的描述,不知道大家有没有把对话跟迭代周期的过程对应起来。接下来尝试对迭代周期里面的各个部分进行通用化,包括细粒度化,共享特征,样本增强,模型复用,模型迁移。

  1.细粒度化:在进行规则制定阶段,要避免指定一个很大的质量问题进行优化,尽量把问题定义成“独立”,“明确”,“与业务无关”的细粒度问题。这样可以减少后面因为业务变化导致的不确定监督问题,提升模型适用性。举个例子:我们之前有个质量问题是黑四类(广告,活动,通知,招聘),标注的时候没有区分,训练的时候也是用一个模型。这样在有新的业务出现的时候突然发现我们不需要黑四类,而是黑三类。还有其他一些不建议的问题类型:标题不规范,正文质量差,内容不优质。

  2.共享特征:虽然不同数据源的样式不一样,这样需要对不同的数据源通过页面解析进行特征抽取,统计。但是对于同一个数据源,不同的质量问题,往往会用到很多相同的特征。一个数据源抽取后的结果可以保存在结构化的数据结构中方便各个质量模型,还有其他的业务模型使用。如文本的位置,是否有链接,是否隐藏,是否模板内容等。

  3.样本增强:通过相似样本挖掘和人工标注容易导致过拟合,标注效率低的问题。这里可以结合数据增强提升模型的鲁棒性,结合主动学习提升标注效率。

  在处理不同的质量问题的时候,我们发现有些问题用到的特征,拟合的方法都是相似的。像越来越多平台算法库对基础模型提供支持一样,通过从具体问题中抽象问题,构建通用模型框架可以有效提高我们的工作效率。而构建通用模型框架需要结合的前面提到的共享特征在设计之初就其保证通用性,适配性,可扩展性。

  这里介绍一下广告识别模型在构建过程中,涉及的几个通用问题模型。广告模型主要是负责识别文章里面的广告内容。从内容上,分为文字广告,图片广告,图文广告。从位置上分顶部广告,中间广告,底部广告。从篇幅上分主体广告,插播广告。那么这里可以抽象成 3 个通用的问题:

  1.问题内容的定位(插播广告);2. 多类型特征的融合(图文广告);3.文章结构的序列化(顶部,中部,尾部,篇幅)。

  问题内容的定位:这类问题与图像中的物体检测相似,都是需要识别相应目标及其对应的位置。据此,我们提供一个全新的用于文本问题检测的框架 TADL。通过滑动窗口的检测方法将大段文本切分成多个小片段,并对每个小片段进行广告概率打分和反推定位,从而在一个模型框架内同时实现了广告文字的识别和定位,并且只需要文章级别的标注就能完成训练。

  多类型特征的融合:图片广告定义广泛,广告的程度需要同时考虑多种类型的特征(文本大小,文本位置,文本语义,图片场景,图片内容)。相对于端到端的需要大规模标注的深度模型,对问题进行分而治之的 wide&deep 模型框架具有更好的解释性,更高的召回。

  文章结构的序列化:一篇文章是否有广告问题,需要对整篇文章中多模态广告的占比,位置进行综合考虑。将不同广告文章中的文本广告概率和图片广告概率进行序列化的可视化展示,发现通过对有限的序列模式进行识别检测可以用来解决多模态文章分类问题。模型通过 Multi-CNN 检测异常“突起”,通过 BiLSTM 检测概率变化趋势。

  数据源之间的数据分布一定是会存在差异的。模型迁移主要是想要解决数据分布不一致的问题。这里我们以色情低俗识别为例子,分“词向量”和“特征分布”两个方面来考虑迁移问题。

  词向量在不同的场景中会表现不一样的语义,如“下面”在图文和视频标题里面就有不同的语义。多数据源数据训练的词向量因为获得了更多的信息量要好于多个数据源单独训练的向量。到后来基于更大量训练集的 bert 的出现更是极大的丰富了词向量的信息量。

  多任务学习通过不同任务间建立共享层,学习不同 domain 之间的共享知识,进而实现双赢。缺点是需要大量的目标领域的有标数据。

  前面所提到的多样化的问题,更多的是平台内部因为业务需求主动引入更多的数据和质量指标导致。这些问题相对来说是静态的。在业务上线之前,平台会进行摸底优化,不会有太多的意外。

  接下来我们讨论数据动态变化的问题。在日常的内容生产过程中,内容生产者根据平台的环境和用户的反馈不断修改内容的样式,类目。这些变化会改变数据的分布,从而导致平台对新数据出现漏召或者误判。其中,黑产的持续不断的有意对抗最为频繁,花样最多,也是我们最为关注的。这些对抗具有形式类目多,迭代周期多的特征。

  迭代周期短:某个特殊的色情标题党样式,在某一时间短获得不错的曝光后,黑产立即进行了大规模的投产,而在受到打压后又迅速的转向其他类型的 case。

  由于敌暗我明,完全杜绝几乎是不可能的。原则上是提高黑产的作弊成本,降低平台的维护成本。我们还是从前面提到质量控制体系的三部分入手。

  平台:每天都有少量的标注人工对线上数据进行轮询,对有问题的数据进行屏蔽收集。

  那么怎么进行样本扩散,加快模型的迭代周期呢?下面是一个样本收集周期里面大概需要做些什么事情。

  首先根据发现的问题数据通过相似度计算,我们在源数据(source data)找到一批跟问题数据(sample data)相似度较高的未标注数据(unlabeled data)。

  然后对这批未标注的数据进行人工标注,这样可以筛选出一批能有效提升模型对新问题识别效率的标注样本(selected data)。

  最后将筛选的样本跟原有的标注数据(labeld data)进行合并作为训练样本进行模型训练。训练好模型之后在测试数据(test data)上面进行测试效果。

  工作周期主要的工作量是在两个部分,一是相似样本的挖掘,二是人工标注样本;相似样本挖掘的精度越高,覆盖的样式越全,人工标注的样本量就越少。而这两方面我们可以使用半监督学习跟强化学习的方法来进行优化。

  更进一步我们尝试使用强化学习代替整个问题样本的挖掘过程,强化学习选择器从源数据里面选择样本,跟已有标注样本送入判别器训练,然后将判别器在测试数据和问题数据的表现当成 Reward 反馈给强化学习选择器。

  一、数据挖掘(Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(Knowledge-Discovery in Databases,简称KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

  利用数据挖掘进行数据处理常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。

  ①分类。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到特定的客户手中,从而大大增加了商业机会。

  ②回归分析。回归分析方法反映的是数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系。

  ③聚类。聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。

  ④关联规则。关联规则是描述数据库中数据项之间所存在的关系的规则。即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。

  ⑤特征。特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。

  ⑥变化和偏差分析。偏差包括很大一类潜在有趣的知识,如分类中的反常实例,模式的例外,观察结果对期望的偏差等,其目的是寻找观察结果与参照量之间有意义的差别。在企业危机管理及其预警中,管理者更感兴趣的是那些意外规则。意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。

  ⑦Web页挖掘。随着Internet的迅速发展及Web 的全球普及, 使得Web上的信息量无比丰富,通过对Web的挖掘,可以利用Web 的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息、客户等有关的信息,集中精力分析和处理那些对企业有重大或潜在重大影响的外部环境信息和内部经营信息,并根据分析结果找出企业管理过程中出现的各种问题和可能引起危机的先兆,对这些信息进行分析和处理,以便识别、分析、评价和管理危机。

  二、数据分析是数学与计算机科学相结合的产物,是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。在实际生活应用中,数据分析可帮助人们作出判断,以便采取适当行动。

  在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。

  ①探索性数据分析:是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。

  ②定性数据分析:又称为“定性资料分析”、“定性研究”或者“质性研究资料分析”,是指对诸如词语、照片、观察结果之类的非数值型数据的分析。

  大量的数据分析需求都与特定的应用相关,需要相关领域知识的支持。通用的数据挖掘工具在处理特定应用问题时有其局限性,常常需要开发针对特定应用的数据分析系统。因此数据分析系统设计的第一步是对特定应用的业务进行深入地分析与研究,总结归纳分析思路并细分出所需的分析功能。

  数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。

  在实用中,数据可为AI提供基础要素,可帮助AI作出判断,以便AI进行学习。例如,来自马萨诸塞州总医院和哈佛医学院放射科的研究人员使用卷积神经网络来识别 CT图像,基于训练数据大小来评估神经网络的准确性。随着训练规模的增大,精度将被提高。

  今天的大多数深度学习是监督的或半监督的,意味着用于训练模型的所有或一些数据必须由人标记。 无监督的机器学习是 AI 中当前的 “圣杯”,因为可以利用原始未标记的数据来训练模型。 广泛采用深度学习可能与大数据集的增长以及无人监督的机器学习的发展有关。然而,我们认为大型差异化数据集(电子健康记录,组学数据,地质数据,天气数据等)可能是未来十年企业利润创造的核心驱动力。

  参考 IDC 报告,全世界创造的信息量预计到 2020 年将以 36%的复合年增长率增长,达到 44 泽字节( 440 亿 GB)。连接的设备(消费者和工业领域),机器到机器通信和远程传感器的增加和组合可以创建大型数据集, 然后可以挖掘洞察和训练自适应算法。

  AI之所以拥有人的思维,人的智慧,其核心在于AI可以通过海量的数据进行机器学习和深度学习。拥有的数据越多,神经网络就变得越有效率,意味着随着数据量的增长,机器语言可以解决的问题的数量也在增长。移动手机、物联网、低耗数据存储的成熟和处理技术(通常在云端)已经在数量、大小、可靠数据结构方面创造了大量的成长。例如:

  5G 的首次展示将最适当地加速数据可被获取和转移的机率。根据 IDC 的数字领域报告,到 2020 年,每年数据量将达到 44ZB(万亿 G),5 年内年复合增长率达到 141%,暗示我们刚开始看到这些科技可以达到的应用场景。

  数据(Data)是指对事实、概念或指令的一种表达形式,可由人工或自动化装置进行处理。数据处理(data processing)是对数据的采集、存储、检索、加工、变换和传输,贯穿于社会生产和社会生活的各个领域。数据经过解释并赋予一定的意义之后,便成为信息。

  通过这个8方面,从大量的、可能是杂乱无章的、难以理解的数据中抽取并推导出对于某些特定的人们来说是有价值、有意义的数据。传统意义上的数据处理离不开软件的支持,每次处理数据大概都需要使用至少三次软件,这对人力物力都是一种极大的浪费。

  车联网一个系统通过在车辆仪表台安装车载终端设备,就对车辆所有工作情况和静、动态信息的采集、存储并发送。车联网系统分为三大部分:车载终端、云计算处理平台、数据分析平台,根据不同行业对车辆的不同的功能需求实现对车辆有效监控管理。车辆的运行往往涉及多项开关量、传感器模拟量、CAN信号数据等等,驾驶员在操作车辆运行过程中,产生的车辆数据不断回发到后台数据库,形成海量数据,由云计算平台实现对海量数据的“过滤清洗”,数据分析平台对数据进行报表式处理,供管理人员查看。

  这两种其实都很好理解,第一种就是通过我们对智能AI的使用,它会收集我们操作步骤以及习惯等数据,等到相同或者类似场景下就可以进行使用。

  第二种人为工程可以理解为我们把相关的资料或者数据通过植入的方式来达成数据处理。

  因为这两种不同的处理方式,让智能AI呈现了多样性,有只稳固执行代码指令的传统写作AI,也有根据自主学习不断创新的创作型AI,下面我就分享四款各不相同的智能AI工具,大家可以自己尝试一验一下区别在哪。

  这是我自己最经常使用的一款智能AI绘画工具,它是属于不断创新的创作型AI,它可以根据我们输入的场景描述,人物细节,动作细节等参数生成一幅符合我们要求的作品或者图片,而且同一段描述多次生成的图片都不尽相同。

  操作也是非常的简单,打开软件后,选择【AI绘画】功能,输入描述,选择好自己喜欢的风格后,点击生成即可。

  一款智能AI写作工具,它可以帮助我们快速生成高质量的文章、文案、描述等内容。它的写作范围比较广,可用于诸如广告文案、产品描述、新闻报道、甚至小说的创作等领域。

  CopyAI使用了智能AI问答生成功能,能够根据我们输入的关键词和要求,自动生成符合我们需求的文本

  它还有多个文本模式,可以让我们根据自己的需求选择适合自己的生成文本模式。

  除了生成文本功能外,它还能够对文本进行翻译、语法检查等,可以帮助我们在生成的文章上按照要求进行修改,确保生成的文章可以符合我们的要求。

  OpenAI GPT是OpenAI 推出的对话式ai模型,经过大规模的训练,它可以进行自然流畅的对话其模型训练时使用了广泛的数据源,使其具备了多领域的知识。这使得OpenAI GP在回答各种问题时都能提供丰富的信息和合理的建议。

  打开OpenAI GPT网页,在对话框输入我们想要提问的内容,或者要求它生成某标题的一篇文章,等一段时间就会开始回答我们的问题。

  国外大佬开发的一款智能AI图片处理平台,它的智能AI处理系统可以是别我们图片上的内容以及细节,然后通过我们选择好的颜色,进行上色搭配。

  操作也是非常的简单,选择我们喜欢的50种颜色后,AI就会根据我们所选择的颜色进行上色。

  我叫划水,但我不是真的划水,关注我@本校区划水的玉桂主页,不再担忧各种软件收费套

  【人工智能没你想象中高级,从数学上来说无非是y=f(x)的映射,只不过这个f比较复杂罢了,由多种多样的权值和网络结构构成】

  现阶段人处理数据,以图像数据为例【语音之类的我不熟悉,不敢妄言】。无非就是对图片做预处理,用专业的词来说叫做数据增广,对图片做一系列平移,旋转,对称,缩放,切割等操作。来扩展数据规模。

下一篇:半岛彩票人工智能的十大主要应用场景
上一篇:半岛彩票资金连续五日净流入人工智能AIETF(515070)涨超3%!

咨询我们

输入您的疑问及需求发送邮箱给我们