网站首页

半岛彩票产品中心

半岛智能终端处理器 半岛智能云服务器 半岛软件开发环境

半岛彩票新闻中心

关于我们半岛彩票

公司概况 核心优势 核心团队 发展历程

联系我们半岛彩票·(中国)官方网站

官方微信 官方微博
半岛彩票·(中国)官方网站 > 半岛彩票产品中心 > 半岛智能终端处理器

《自然》论文:深度学习人工智能模型可辅助术中进行快速肿瘤分类半岛彩票

发布时间:2023-10-12 11:56浏览次数: 来源于:网络

  半岛彩票中新网北京10月12日电 (记者 孙自法)国际著名学术期刊《自然》最新发表一篇医学研究论文,研究人员报道了一种给中枢神经系统(CNS)肿瘤快速分类的技术,结合快速测序和深度学习人工智能(AI)模型,或能在不到90分钟内完成分子诊断。这项研究结果显示出术中进行肿瘤分子诊断以辅助手术决策的潜在可行性。

  该论文介绍,中枢神经系统肿瘤的主要治疗方式包括通过手术摘除肿瘤,这要求经过谨慎考虑后,能在清除肿瘤组织的同时最大程度降低神经系统损伤等并发症的风险。不过,目前的标准流程依赖术前成像和术中组织学分析,但这些方法有时无法给出最终结论,偶尔也不准确。通过DNA测序获得甲基化图谱或揭示关于肿瘤起源和预后的信息,但一般要好几天才能出结果。

  为快速获得DNA甲基化图谱,从而实现术中诊断,论文共同通讯作者、荷兰乌得勒支大学J.De Ridder和同事及合作者使用纳米孔测序技术,该技术速度更快,但产生数据覆盖的遗传位点不如传统测序技术多,为在很少数据下实现中枢神经系统肿瘤的分子分类,研究团队开发出一款深度学习人工智能模型——名为“Sturgeon”的神经网络工具。

  在用模拟数据对Sturgeon神经网络工具进行训练和校准后,论文作者用中枢神经系统肿瘤样本的数据对其进行测试,结果显示,Sturgeon基于相当于测序20-40分钟的数据对50个样本中的45个进行了正确分类。他们还在25次手术期间测试了Sturgeon的表现,发现它能给72%的肿瘤(18/25)准确分类,且给出诊断报告的时间不超过90分钟。

  违法和不良信息举报电话: 举报邮箱:报受理和处置管理办法总机:86-10-87826688

下一篇:半岛彩票如何监管人工智能?东盟草案挫伤欧盟“雄心”
上一篇:还在等特斯拉? 毫末智行告诉你这些大咖在HAO半岛彩票MO AI DAY讲了啥

咨询我们

输入您的疑问及需求发送邮箱给我们