半岛彩票《深度学习:智能时代的核心驱动力量》,【美】特伦斯·谢诺夫斯基著,中信出版集团2019年2月出版。
推荐理由:深度学习是人工智能从概念到繁荣得以实现的主流技术。经过深度学习训练的计算机,不再被动按照指令运转,而是像自然进化的生命那样,开始自主地从经验中学习。本书作者特伦斯·谢诺夫斯基是优选人工智能十大科学家之一、深度学习先驱及奠基者。作为深度学习领域的通识作品,本书以恢弘的笔触,通过3个部分全景展现了深度学习的发展、演变与应用,以亲历者视角回溯了深度学习浪潮在过去60年间的发展脉络与人工智能的螺旋上升,并前瞻性地预测了智能时代的商业图景。
如果说一般人对于人工智能这一“物种”有什么深刻记忆的话,大概有两件事。一件是1997年,IBM的“深蓝”战胜了国际象棋大师卡斯帕罗夫。另一件是2016年3月,谷歌的AlphaGo与围棋世界冠军李世石进行人机大战,结果以4比1的总比分获胜。之前,很多人曾认为计算机并不能掌握围棋的复杂规则。
次年5月,在中国乌镇围棋峰会上,AlphaGo的升级版AlphaGoZero与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分完胜。
令人震惊的是,AlphaGoZero一开始就没有接触过人类棋谱。它使用了新的强化学习方法,只是从单一神经网络开始,通过神经网络强大的搜索算法,进行自我对弈训练。随着自我对弈的增加,神经网络逐渐调整,提升预测下一步的能力,最终成为具备超强棋力的“选手”。
更为厉害的是,随着训练的深入,阿尔法围棋团队发现,AlphaGoZero还独立发现了游戏规则,并走出了新策略,为围棋这项古老游戏带来了新的见解。
曾经,人工智能在人们心目中的形象大多停留在《星球大战》等科幻片中,但AlphaGo的面世,让人们真正意识到,人工智能真的来了。
但是,人工智能究竟是如何走到现在的,它进化的路线究竟是什么样,同时它将走向什么方向?很多人可能并不了解。
特伦斯·谢诺夫斯基作为深度学习领域的先驱及奠基者,来回答这一问题,是最合适不过了。他所写的《深度学习》一书,可以看作是人工智能的发展简史。
这不是一本讲技术的书,而是一本故事书,它不是写给程序员看的,而是写给大众看的。
著名作家尤瓦尔·赫拉利在《今日简史》中写道,人们普遍认为,机器学习将改变几乎所有的工作,从制作酸奶到教授瑜伽都无法幸免。我们有充分的理由相信这次情况不同,机器将会真正让整个情况彻底改变。
可能有人对此并无明晰的观感,那么,我们可以看几个例子。比如贷款审核员,他们评估借款人的信用好坏,是通过分析对方的面部表情、声调、手部动作甚至体味来识别生化模式。而人工智能只要搭配适当的传感器,绝对可能把这些工作做得比人类更精确可靠。比如现在的测谎仪,在测谎方面就已经超过了大多数人,不是吗?
所以,尤瓦尔·赫拉利指出,在过去几十年中,在神经科学和行为经济学等领域的研究,让科学家能够“破解”人类,更清楚地了解人类究竟是如何做出各种决定的。事实证明,我们从选择食物到选择伴侣,都不是出于什么神秘难解的自由意志,而是数十亿神经元在瞬间计算各种可能性的结果。过去大受赞赏的“人类直觉”,其实只是“辨识模式”罢了。
而谢诺夫斯基正是推动神经网络学习的先驱。或许是冥冥之意,他出生的上世纪五十年代,正是人工智能的萌芽期,深度学习革命的种子,正在那时开始播下。
但由于受计算机能力的限制,人工智能发展缓慢。而马文·明斯基和西摩尔·帕特普出版的《感知器》一书,则让人工智能在上世纪70年代陷入深寒,“寸草不生”。《感知器》一书的观点是:感知器学习算法并不能扩展到多层感知器。
谢诺夫斯基回忆说,“这种毫无根据的‘直觉’(除此之外,这倒是一本好书)对神经网络学习的发展产生了令人不寒而栗的影响,让一代人的研究就此停滞不前。”
好在出身生物学的谢诺夫斯基,对神经网络抱有坚定的信心,并幸运地遇到了他的搭档杰弗里·辛顿。两人在此领域坚持了下来,一干就是几十年。
谢诺夫斯基和辛顿合作研究出了一种新型神经网络模型,叫“玻尔兹曼机”,打破了阻碍一代人研究多层网络模式的僵局,证明了基于大脑式计算的全新方法是可行的,最终为深度学习的发展奠定了基础。而且,谢诺夫斯基还有机会怼一下学术上的“宿敌”。2006年,在达特茅斯人工智能会议“AI@50”的晚宴上,他问明斯基:“神经网络社区有一种看法:你是上世纪70年代需要为神经网络萧条负责的魔鬼。你是魔鬼吗?”明斯基犹豫了片刻,然后喊道:“是的,我是魔鬼!”
但深度学习是数据密集型的,在当时的计算机条件下,人工智能无法取得重大突破。直到30年之后,计算机开始变得足够快,同时也可以获得大量可利用的数据,这让深度学习实现了重大突破,并且在当前的人工智能领域占据主导地位。
谢诺夫斯基总结说,神经网络学习的重大突破每30年就会发生一次。这三个节点分别为:上世纪50年代引入感知器;上世纪80年代学习多层感知器算法;2010年开始兴起的深度学习。
谢诺夫斯基认为,深度学习将对社会和个人生活产生深远的影响,但你无需担心谁将接管你的工作。就像工业革命时期蒸汽机放大了物理能力一样,人工智能也会放大人类的认知能力,人工智能会让你更聪明。
而瓦尔·赫拉利则大胆地进行了一些预测。他说,2050年的就业市场,很可能是人类与人工智能的合作,而非竞争。虽然“深蓝”击败了卡斯帕罗夫,但人类并没有停止下棋。相反,在人工智能的协助下,人类的国际象棋大师水平比过去更高。所以很有可能,人工智能也能如法炮制,协助培养出历史上最优秀的侦探、银行经理和军人。
不过,令人悲观的一面是,这些新工作可能需求高水平的专业知识,因此无法解决“无技能者”的就业问题。新的无用阶层可能会日益庞大,一方面许多人找不到工作,另一方面也有许多雇主找不到有技能的雇员。
“这有点像19世纪汽车取代马车时的情景──当时有许多马车夫转行当出租车司机。只是,我们可能不是那些马车夫,而是被淘汰的马。”瓦尔·赫拉利说。